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Abstract—Network Time Security (NTS) standardizes mech-
anisms that allow clients to authenticate timing information
received via Network Time Protocol (NTP). NTS includes a
new key establishment protocol, NTS-KE, and extension fields
for NTPv4 which, when utilized together, allow clients to au-
thenticate messages from time servers. Utilizing an open source
implementation of each, we determine the existence and severity
of any performance or scalability impact introduced by NTS
when compared to NTP. We found that conducting individual
authenticated time transfer takes approximately 116% longer
when utilizing NTS over NTP. Additionally, we found that NTS-
KE can only support approximately 2000 requests per second
before a substantial and consistent increase in turnaround time
is observed.

I. INTRODUCTION

The Network Time Protocol (NTP) [1] is currently used to
provide accurate timing information to hundreds of millions
of networked devices around the world. Despite its staggering
usage, NTP is one of the last remaining, widely-used protocols
with no security components. Currently, there is no native
method for NTP clients to authenticate time information
obtained from NTP servers. This presents an opportunity for
the malicious operation of fraudulent NTP sources to distribute
incorrect timing information to client machines.

Network Time Security (NTS, RFC8915) [2] was estab-
lished to augment NTP with a variety of useful security
features, including authentication, confidentiality, replay pre-
vention, and non-amplification. While these features address
some of the vulnerabilities of NTP, time server operators
are concerned that the introduction of the added security
features in NTS may negatively impact the performance of
time distribution systems and accuracy of the timing informa-
tion, especially in cases when a large number of clients are
connected.

This study determines the existence and severity of any
performance or scalability impact introduced by NTS. An
NTS implementation was augmented to isolate NTS specific
functionality from the NTP processes and benchmarked, so
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that NTS could be observed independently from standard NTP
protocol execution. The isolated operations include the TLS
key exchange, server side cookie creation, and message sign-
ing. This isolation allowed NTP and NTS to be observed and
quantified independently, showing a clear comparison between
the time required to perform unauthenticated time transfer
and authenticated time transfer. Measurements were gathered
under loaded and unloaded circumstances to determine the
scalability and performance of NTS respectively. While other
works have previously gathered measurements of NTS under
no load [3], no investigation was conducted to determine the
scalability of NTS.

II. PRELIMINARIES

Network Time Security, published in September 2020 by the
IETF, introduced two specific sub-protocols that are critical to
the functionality of securing NTP. The first is the NTS Key
Establishment Protocol (NTS-KE), where NTS clients contact
an NTS key establishment server to obtain a secure cookie
containing encryption parameters along with the address of an
NTS aware NTP server. The client then transmits this cookie
in conjunction with a request for NTP time transfer to that
NTP server via NTS Extension Fields for NTPv4. Both of
these mechanisms are showcased in Figure 1.

NTS-KE begins when a client initiates a TLS handshake
with a key establishment server where a shared encryption
method is established. Using this encrypted channel, the client
issues a Key Establishment (KE) request message to the server,
containing Authenticated Encryption Associated with Data
(AEAD) and NTS Next Protocol negotiation. The KE server
responds with the negotiation status and a new cookie for
NTPv4 if negotiations were successful. Both endpoints issue
a TLS close notify immediately after sending their respective
messages whether or not negotiations were successful.

In addition to a secure cookie, the client also receives the ad-
dress of an NTS aware NTP server from the KE server, which
it contacts immediately. The client transmits an NTP client
packet with the NTP extension fields containing the secure
cookie and an authentication tag. Using the implementation
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Fig. 1. Overview of NTS-KE and NTS Extension Fields for NTPv4
mechanisms

specific shared medium, illustrated as a key store in Figure 1,
the NTP server uses the cookie to both reconstruct the shared
keys contained within and subsequently transmit authenticated
time information. In addition, the NTP server creates a new
encrypted cookie transmitted to the client simultaneously
which, according to RFC 8915, should be utilized for future
time transfer requests.

Both NTS-KE and NTP servers utilize the same shared
medium when they create secure cookies for clients. This
interaction allows all members of this secure time domain
to interact with any clients regardless of which machine
created the cookie. Additionally, by storing relevant security
information in the cookie, NTS-KE and NTP servers remain
stateless, a highly desirable property due to NTP’s widespread
usage and subsequent large number of clients.

It is important to note that NTPv4 can still be conducted in
parallel with NTS mechanisms by simply not contacting the
NTS-KE server and excluding or ignoring the NTP extensions.
Clients can still request unauthenticated NTP by ignoring
NTS-KE, contacting only the NTS aware NTP server without
the required extension fields. Non-NTS Aware NTP servers
that cannot or choose not to parse the NTS extensions simply
ignore them and respond using a standard, unauthenticated
NTPv4 header. While this is undesirable from a security
standpoint, proprietary local error correction methods can
correct for the lack of security, such as maintaining a sliding
window of previously received authenticated time to resist
jumps. More importantly, backwards compatibility allows the
NTP server to utilize unaltered NTPv4 headers on both the
client and server side to perform authenticated NTP.

Thanks to a generous effort by Cloudflare [4], an open
source implementation of NTS-KE, the NTPv4 Extension
Fields and key storage mechanisms are readily available. The
implementations are available as a collection titled CFNTS [5],
written in Rust and completed in mid 2020. CFNTS is a

prime candidate for experimentation due to its status as a
reference implementation. Unlike other open source NTS
implementations [6], [7], CFNTS does not conduct continuous
time transfer using a daemon process, allowing a single key
exchange and time transfer to occur in a user process. This
property is useful as it allows a single machine to host multiple
NTS clients in parallel which greatly simplifies experimenta-
tion. In addition, this simplified architecture results in direct
access to the core protocols, meaning almost all of CFNTS’
run time is devoted to explicit time transfer rather than other
internal mechanisms such as modifying the local system time.

CFNTS utilizes Memcached [8], an open source memory
object caching system, to store cookie decryption information
generated during NTS-KE. Memcached provides a simple in
memory key-value store accessible across processes. CFNTS
initializes KE server operation by writing randomly generated
16-byte values into the Memcached store to be used as encryp-
tion keys during the cookie creation phase of NTS-KE. These
keys are later recalled by the NTP server to decrypt cookies
received by clients during an authenticated NTP exchange. It is
important to note that the Memcached allows other networked
machines access to the key-value store in addition to local
processes. However, our experiments host the NTS-KE and
NTPv4 servers on the same machine, so there is no network
transmission required to read or write keys to Memcached.

III. METHODOLOGY

After careful study of CFNTS and its time transfer pro-
cedures, key areas of operation in both the client and the
server were identified and an experimental benchmarking suite
was developed to quantify operational time of the NTS-
KE and authenticated NTPv4. Timestamps throughout pro-
tocol operation were gathered using Rust’s standard library
time::Instant::now() function and are represented in Figure 2.

Beginning with client side measurements, the total time
required for a client to perform a TLS handshake with the KE
server, negotiate NTS-KE encryption parameters and receive
an NTS-KE secure cookie is represented by dCKE (1). Simi-
larly, the time required for a client to conduct authenticated
time transfer using the cookie is dCNTS (2).

dCKE = t4 − t1 (1)

dCNTS = t10 − t5 (2)

All server side measurements begin when a request is
received from a client, and continue measuring until the
response is fully formulated and ready for transmission back to
a client. For example, the server receives a request for an NTS
cookie from the client at t2. The server proceeds to conduct
a TLS handshake, contact the shared key store, and create
a cookie for the client. t3 is taken at this time; when the
cookie is generated and ready to be transmitted to the client.
This measurement constitutes dSKE (3). dSNTS (4) functions
similarly, in that it represents all operations the server needs to
take in order to decrypt the incoming NTS cookie, authenticate
the NTPv4 header, and create the frame for transmission. Note
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dSNTS does not include the creation of a new cookie due to
the single time transfer nature of CFNTS. dSNTP (5) represents
the creation of the NTPv4 header at the server. It involves no
network or security operations. dSNTP and dSNTS represent the
total time the server requires to perform authenticated time
transfer.

dSKE = t3 − t2 (3)
dSNTS = t8 − t7 (4)
dSNTP = t7 − t6 (5)

Finally, using these measurements, an observer can deter-
mine the time consumed during unauthenticated NTP time
transfer by:

dCNTP = dCNTS − dSNTS = (t10 − t5)− (t8 − t7) (6)

This study determines both the performance and scalabil-
ity of NTS, so two separate experiments were developed
to complete each of these objectives individually. The first
experiment utilized one client connected to one server in an
unloaded environment to measure performance of NTS-KE
and authenticated NTPv4. The second suite implemented a
many-to-one pattern where clients transmitted an increasing
number of requests per second to a single server in order to
simulate a large network and measure scalability of NTS-KE
and NTPv4.

A single dedicated server containing a 4-core 3.3 GHz Intel
i5-2500k and 24 GB of memory hosted both the NTS-KE
and NTP server for all experiments. This allowed for the
shared cookie decryption parameters to be stored in a local
Memcached instance and therefore required no network access

TABLE I
OBSERVED AND CALCULATED PERFORMANCE MEASURES

dCKE Total time required for a client to receive the
initial encrypted cookie

dCNTP Calculated approximation of unauthenticated
time transfer

dCNTS Total time required for a client to conduct
authenticated time transfer

dSKE Time required for a KE server to create an
encrypted cookie

dSNTP Time required for an NTP server to create an
NTPv4 header

dSNTS Time required for an NTP server to process an
encrypted cookie and authenticate an NTPv4
message

to decrypt client cookie information. Before any measurements
were recorded, ten NTS-KE mechanism and NTP transfers
were conducted to allow connections a warm up period and
decrease overall variance of data.

IV. PERFORMANCE EVALUATION

To measure performance of NTS mechanisms, an unloaded
experimental setup was constructed where a single client
issued one request per second to both the KE server and NTP
server until 1000 measurements were collected. Figure 3 is
a visual representation of the unloaded experiment configura-
tion.
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Fig. 3. Experiment setup for performance evaluation

In this scenario, the measurement client is a virtual machine
with eight cores and 16 GB of memory. This client transmitted
one NTP-KE request and one NTP request per second for
1000 seconds to determine the unloaded operational times
of CFNTS. These requests were benchmarked in accordance
with Figure 2 which resulted in the following cumulative
distribution functions, with minimum and maximum observed
values explicitly labeled.

By taking the mean of the explicitly defined values in the
cumulative distribution functions, we can conclude the average
time consumed by each interval, defined in Table II.
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Additionally, average dCNTP, the time required to perform
unauthenticated NTP, is 0.79 ms. When compared to an
average dCNTS of 0.87 ms, there is a 9.73% increase in
time required to conduct only authenticated time transfer.
Accounting for the time needed to conduct NTS-KE, 2.26 ms,
there is a 117% increase. These results are consistent with the
measurements of the cost of adding security reported in the
context of the Precision Time Protocol [9].

dCKE takes approximately three times longer to complete
than dCNTS, which is due almost entirely to network latency.
To perform dCKE, the server and the client must conduct a TLS
handshake, negotiate application specific NTS-KE encryption
parameters, and exchange the encrypted cookie. Because
CFNTS does not conduct continuous time transfer, no TCP
or TLS parameters are stored. Consequently, three network

TABLE II
AVERAGE UNLOADED PERFORMANCE MEASURES

dCKE dCNTS dSNTP dSKE dSNTS

2.26 ms 0.87 ms 2.03 µs 18.13 µs 80.80 µs

round trips are required for each NTS-KE exchange, regardless
of previous requests. Conversely, NTPv4 only requires one
network round trip to transfer time, so it is approximately
three times faster than NTS-KE from the perspective of the
client.

Perhaps the most surprising measurement comparison is
between dSNTS and dSKE. Intuitively, these server side mea-
surements should take a similar amount of time to complete,
as both should need to read from and write to the Memcached
store. However, before CFNTS begins serving NTS-KE re-
quests, it loads all cookie encryption keys into a local data
structure, removing the need for repeated read operations from
Memcached.

V. SCALABILITY EVALUATION

Our scalability study determines how many requests per
second the KE server and the NTP server could process. Due
to limitations in hardware available to the research team, a
single client could reliably send approximately 1500 requests
per second (rps) to the KE server and the NTP server. Because
of this, multiple client machines were utilized to issue large
numbers of requests. At the beginning of the experiment a
single client began by issuing 100 rps for 20 seconds to gather
steady state measurements. Once the measurement window
had elapsed, all machines in the experiment were power-
cycled and the client would increase the request load to
the server, issuing 200 rps for 20 seconds. This incremental
increase in the number of requests per second would continue
until the client was issuing 500 rps. At the beginning of the
subsequent measurement window, the client machine would
start an auxiliary, or AUX client, whose sole purpose is to
continually issue 500 rps. The original client would then issue
100 requests leading to a global load of 600 per second; 500
from the AUX client and 100 from the measurement client.
When the measurement client again reached 500 rps, resulting
in a global load of 1000 rps, another AUX client would be
added, and the next iteration of the experiment would continue
with a global load of 1100 rps. This methodology is illustrated
in Figure 6.

The measurement client is identical to the client utilized
during performance evaluation, a virtual machine with eight
cores and 16 GB of memory. The server is also identical,
containing a 4-core 3.3 GHz Intel i5-2500k and 24 GB of
memory. Each AUX client is an identical virtual machine with
four cores and eight GB of memory. Fifteen total AUX clients
were available, resulting in an upper limit of 8000 total rps.

The measurements gathered are the same as previously
mentioned and illustrated in Figure 2. However, it is impor-
tant to note that our measurement environment only records
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Fig. 6. Experiment setup for scalability evaluation

measurements from the measurement client and not from
any AUX clients. This is true for both client and server
side measurements. To compensate for this, we ensure that
the measurement client issues requests only after all active
AUX clients have begun issuing requests. This prevents the
measurement client from gathering measurements when no
external load is present and provides measurements similar to a
worst-case scenario. Additionally, to find the limits of both the
NTS-KE and NTP server, three NTPv4 exchanges took place
for each NTS-KE exchange. This ratio aligns with the results
of the scalability study, where NTS-KE took approximately
three times longer to complete than authenticated NTPv4.
This lies in contrast with the recommendations of RFC 8915
Section 1.3 [2], which states that only one time transfer
should take place per secure cookie to ensure unlinkability.
However, that recommendation relies on another attribute of
NTS: that an additional, new cookie is provided to the client
in conjunction with NTPv4 time transfer, which CFNTS does
not do. Using CFNTS, following this recommendation would
require an explicit invocation of NTS-KE for each individual
time transfer. This is not how the protocol is intended to be
executed. To compensate, three time transfers were executed
using the same cookie.

As illustrated in Figure 7, the measurement client experi-
ences increased NTS-KE turnaround times beginning at 2000
rps. The median measured response time increases by an
average of 50.09 ms, while the 95th percentile measurement
increases by 744.64 ms on average. This increase in response
time continues throughout the remainder of our observations.
In addition, at 2300 rps, the client begins to experience
errors after requesting encrypted cookies. The primary error
types were connection time out and resource temporarily
unavailable. Connection timeout occurs when the KE server
was unable to provide a cookie within ten seconds per the
protocol timer, and resource temporarily unavailable implies
that the KE request could not be processed. The ratios of errors
encountered throughout experimentation is present in Figure 8.

Conversely, load was observed to have no effect on dCNTS.
Visible in Figure 9, dCNTS remained around the expected
value obtained during the performance study of approximately
0.7 ms, with few outliers. Our research team speculates
that, because new encrypted cookies can only be obtained
through explicit execution of NTS-KE, clients are not issuing

a sufficient number of requests to the NTP server in relation
to the KE server. Empirical evidence should be gathered and
this claim should be investigated in the future.
dSKE, dSNTP, and dSNTS, illustrated in Figures 10, 11, and

12, were relatively uniform during the scalability experiments.
This is to be expected, as these local server side operations
do not depend on a network and execute in relatively constant
time, so naturally they are unaffected by external network load.

VI. CONCLUSIONS

Given that NTS includes additional security features, includ-
ing a TLS handshake and implementation specific distribution
of encryption parameters, it was expected that it would be
more resource intensive than NTP. The objective of this study
was to quantify both the performance and scalability of NTS-
KE and authenticated NTPv4 when compared to base NTP.
Utilizing CFNTS, we found that authenticated NTP takes
approximately 117% longer to conduct time transfer than
base NTP from the client’s perspective. Regarding the server,
creating a secure cookie during NTS-KE adds an overhead
of 18.13 µs, and repeated server operations saw a significant
increase on average from 2.03 µs to 80.8 µs. Scalability of
NTS was also quantified, where we found that the NTS-KE
server could only process 2000 requests per second before
a substantial and consistent increase in response time and
unprocessed requests were observed. All other measurements
were unaffected by scaling.

Future opportunities for research include further increasing
the number of requests per second issued from clients, or
increasing the number of time transfers per cookie to identify
scalability limits of authenticated NTPv4. In addition, other
open source NTS implementations can be augmented to ob-
serve the performance of sustained time transfer using NTS.
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